Operational interpretation of Rényi conditional mutual information via composite hypothesis testing against Markov distributions

Marco Tomamichel1, Masahito Hayashi2

1School of Physics, The University of Sydney
2Graduate School of Mathematics, Nagoya University, and Centre for Quantum Technologies, National University of Singapore

ISIT 2016, Barcelona
(arXiv:1511.04874)
Simple Hypothesis testing

- Binary hypothesis testing (HT) is fundamental in statistics and information theory.

(Simple) Binary HT

- Sequence of random variables $X^n = (X_1, X_2, \ldots, X_n)$ with X_i taking values in \mathcal{X}.
- Two distributions $P, Q \in \mathcal{P}(\mathcal{X})$.

 null hypothesis: $X^n \sim P^\times n$,
 alternative hypothesis: $X^n \sim Q^\times n$.

- Sequence of tests, maps $T^n : \mathcal{X}^n \rightarrow [0, 1]$.
- Define errors of two kinds,

$$\alpha_n(T^n) = \mathbb{E}_{P^\times n}[1 - T^n(X^n)] \quad \text{and} \quad \beta_n(T^n) = \mathbb{E}_{Q^\times n}[T^n(X^n)].$$
Critical rate

- The goal is to understand the asymptotic tradeoff between α_n and β_n for optimal test sequences.

Stein’s lemma

Let T^n be a sequence with $\alpha_n \leq \varepsilon$, for $\varepsilon \in (0, 1)$. Then

$$\beta_n \geq \exp(-nD(P\|Q) + o(n))$$

and there is a sequence that achieves this.

- This gives operational significance to the relative entropy:

$$D(P\|Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}.$$

- $D(P\|Q)$ is a critical rate: if β_n vanishes faster than $\exp(-nD(P\|Q))$ then α_n must converge to 1.
Small deviations

- Strassen (1962) showed a refinement for small deviations from the critical rate.

Second order refinement

Let T^n be a sequence with $\beta_n \leq \exp(-nD(P\|Q) - \sqrt{n}r)$ for some $r \in \mathbb{R}$. Then

$$\lim_{n \to \infty} \alpha_n \geq \Phi \left(\frac{r}{\sqrt{V(P\|Q)}} \right)$$

and there is a sequence that achieves this.

- Φ is the cumulative standard normal distribution function.
- The relative entropy variance characterizes the second order:

$$V(P\|Q) = \sum_{x \in X} P(x) \left(\log \frac{P(x)}{Q(x)} - D(P\|Q) \right)^2.$$
Large deviations

- For rates below the relative entropy we find the error exponent (attributed to Hoeffding).

Error exponent

Let T^n be a sequence with $\beta_n \leq \exp(-nR)$ for $R \geq 0$. Then

$$\lim_{n \to \infty} -\frac{1}{n} \log \alpha_n \leq \sup_{s \in (0,1)} \left\{ \frac{1 - s}{s} \left(D_s(P\|Q) - R \right) \right\}$$

and there is a sequence that achieves this.

- Here the Rényi divergence is given by (Rényi, 1961)

$$D_\alpha(P\|Q) = \frac{1}{\alpha - 1} \log \left(\sum_{x \in X} P(x)^\alpha Q(x)^{1 - \alpha} \right)$$

- This result is only meaningful for $R \leq D_1(P\|Q) = D(P\|Q)$.
Comprehensive hypothesis testing

- In our work we look at a general framework of HT problems:

<table>
<thead>
<tr>
<th>HT with composite alternative hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sequence of random variables (X^n = (X_1, X_2, \ldots, X_n)) with (X_i) taking values in (\mathcal{X}).</td>
</tr>
<tr>
<td>• A distributions (P \in \mathcal{P}(\mathcal{X})) and a sequence of sets ({Q_n}_{n \in \mathbb{N}}) with (Q_n \subset \mathcal{P}(\mathcal{X}^n)).</td>
</tr>
</tbody>
</table>

null hypothesis: \(X^n \sim P \times^n \),
alternative hypothesis: \(X^n \sim Q^n \), for \(Q^n \in Q_n \).

- Error is now \(\beta_n(T) = \max_{Q^n \in Q_n} \mathbb{E}_{Q^n}[T^n(X^n)] \).
- The \(Q_n \) characterize the composite hypothesis.
- We show that under certain conditions on \(Q_n \) variations of the above results still hold.
Axioms for Q_n

- Define $D_\alpha(P\|Q) := \inf_{Q \in Q} D_\alpha(P\|Q)$.

Axiom 1: convexity

The base set $Q = Q_1$ is convex. Moreover, $\arg \min_{Q \in Q} D_s(P\|Q)$ lies in the relative interior of Q for all s (and is thus unique).

Axiom 2: independent identical distributions (i.i.d.)

We have $Q^{\times n} \in Q_n$ for every $Q \in Q$.

- From Axiom 2 follows that $D_s(P^{\times n}\|Q_n) \leq nD_s(P\|Q)$.

Axiom 3: superadditivity

For all $s \geq 0$ we have $D_s(P^{\times n}\|Q_n) \geq nD_s(P\|Q)$.

- Hence if Axioms 2&3 hold we have equality, or additivity.
• A distribution \(Q^n \in \mathcal{P}(\mathcal{X}^n) \) is permutation invariant (p.i.) if

\[
Q^n(x_1, x_2, \ldots, x_n) = Q^n(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})
\]

for all \(\pi \in S_n \) and \(x^n \in \mathcal{X}^n \).

• The set \(Q_{n}^{\text{p.i.}} \) comprises all p.i. elements of \(Q_n \).

Axiom 4a: universal distribution

There exists a sequence of distributions \(U^n \in Q_{n}^{\text{p.i.}} \) and a polynomial \(v(n) \) such that, for all \(Q^n \in Q_{n}^{\text{p.i.}} \),

\[
Q^n(x^n) \leq v(n)U^n(x^n), \quad \forall x^n \in \mathcal{X}^n.
\]

• The map \(Q^n(\cdot) \mapsto \frac{1}{n!} \sum_{\pi} Q^n(\pi(\cdot)) \) is called symmetrization.

Axiom 4b: symmetrization

The set \(Q_n \) is closed under symmetrization.
An important consequence

- The importance of the universal distribution lies here:

Lemma: universal test

If Axioms 2–4 hold, then

\[
\lim_{n \to \infty} \frac{1}{n} D_s(P^{\times n} \| U^n) = D_s(P \| Q).
\]

Proof of ‘≥’: Implied by additivity.

Proof of ‘≤’: For every \(Q \in \mathcal{Q} \) we find that \(Q^{\times n} \in \mathcal{Q}_n^{p.i.} \). Hence,

\[
D_s(P^{\times n} \| U^n) \leq D_s(P^{\times n} \| Q^{\times n}) + \log v(n)
= nD_s(P \| Q) + O(\log n).
\]

Inequality follows by taking limit and supremum over \(Q \in \mathcal{Q} \).
Main result: large deviations

- Define optimal constrained error as

\[\hat{\alpha}_n(\mu) := \min_{\alpha_n(T^n)} \{ \alpha_n(T^n) : \beta_n(T^n) \leq \mu \}. \]

Theorem: error exponent

Assume Axioms 1–4 hold. For any \(R \leq D(P\|Q) \),

\[
\lim_{n \to \infty} - \frac{1}{n} \log \hat{\alpha}_n(\exp(-nR)) = \sup_{s \in (0,1)} \left\{ \frac{1-s}{s} (D_s(P\|Q) - R) \right\}.
\]

Proof of achievability:

- We use a Neyman-Pearson tests between \(P^{\times n} \) and the universal distribution \(U^n \).

\[
T_n(x^n) = \begin{cases}
1 & \text{if } P^{\times n}(x^n) \geq \lambda_n U^n(x^n) \\
0 & \text{else}
\end{cases}
\]
Proof of achievability (continued):

- For the error α_n we find
 \[
 \alpha_n(T_n) = P^{\times n} \left[P^{\times n}(X^n) < \lambda_n U^n(X^n) \right] \leq \lambda_n^{-s} \exp \left((s - 1) D_s(P^{\times n} \| U^n) \right).
 \]

- For the error β_n we find
 \[
 \beta_n(T_n) = \max_{Q^n \in \mathcal{Q}_n} Q^n \left[P^{\times n}(X^n) \geq \lambda_n U^n(X^n) \right] \leq v(n) \lambda_n^{-s} \exp \left((s - 1) D_s(P^{\times n} \| U^n) \right).
 \]

- We chose λ_n such that the above is bounded by $\exp(-nR)$. The corresponding $\alpha(T^n)$ is an upper bound on $\hat{\alpha}_n$. We find
 \[- \log \alpha_n \left(\exp(-nR) \right) \geq \frac{1-s}{s} \left(D_s(P^{\times n} \| U^n) - nR - \log v(n) \right).\]

- And we see that the rhs. converges to the expected quantity.
- We optimize over $s \in (0, 1)$.
Main result: second order

- Let $Q^* = \arg \min_{Q \in \mathcal{Q}} D(P \| Q)$, define $V(P \| Q) = V(P \| Q^*)$.

Theorem: second order

Assume Axioms 1–4 hold. For any $r \in \mathbb{R}$, we have

$$\lim_{n \to \infty} \hat{\alpha}_n \left(\exp \left(-nD(P \| Q) - \sqrt{nr} \right) \right) = \Phi \left(\frac{r}{\sqrt{V(P \| Q)}} \right).$$

Proof of achievability:

- We use the same test.

$$T_n(x^n) = \begin{cases} 1 & \text{if } P^{\times n}(x^n) \geq \lambda_n U^n(x^n) \\ 0 & \text{else} \end{cases}.$$

- For $s = 1$ the errors are bounded as

$$\beta_n(T^n) \leq v(n) \lambda_n^{-1} \quad \text{and} \quad \alpha_n = P^{\times n} \left[P^{\times n}(X^n) < \lambda_n U^n(X^n) \right].$$
Proof of achievability (continued):

- We set \(\lambda_n = v(n) \exp(nD(P\|Q) + \sqrt{n}r) \) and find
 \[
 \alpha(T^n) = P^\times_n [Y_n(X^n) < r] \quad \text{with} \quad Y_n = \frac{1}{\sqrt{n}} \left(\log P^\times_n(X^n) - \log U^n(X^n) - nD(P\|Q) - \log v(n) \right).
 \]

- The **cumulant generating function** of the sequence \(Y_n \) converges to a quadratic function:
 \[
 \log M_Y(t) = \lim_{n \to \infty} \log E[\exp(tY_n)]
 = \lim_{n \to \infty} \left\{ \frac{t}{\sqrt{n}} \left(D_1 + \frac{t}{\sqrt{n}} (P^\times_n\|U^n) - nD(P\|Q) \right) \right\}
 = \frac{t^2}{2} V(P\|Q).
 \]

- By **Lévi’s theorem**, \(Y_n \) converges in probability to a Gaussian distribution with zero mean and variance \(V(P\|Q) \). \(\square \)
Example: testing against Markov distributions

HT against Markov distribution

- Sequences of random variables \((X^n, Y^n, Z^n)\).
- A distribution \(P_{XYZ} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Y})\).

null hypothesis: \((X^n, Y^n, Z^n) \sim P_{XYZ}^{\times n}\),
alternative hypothesis: \(X^n \leftrightarrow Y^n \leftrightarrow Z^n, (X^n, Y^n) \sim P_{XY}^{\times n}\).

- The alternate hypothesis has fixed i.i.d. marginal on \((X^n, Y^n)\), but arbitrarily correlated with \(Z^n\).

\[Q_n = \left\{ P_{XY}^{\times n} \times Q_{Z^n|Y^n} : Q_{Z^n|Y^n} \in \mathcal{P}(Z^n|Y^n) \right\} \]

- Other variants are discussed in the paper.
Checking axioms: α-conditional mutual information

- Minimizing the relative entropy yields the conditional mutual information (CMI):

$$\min_{Q_{XYZ} \in \mathcal{Q}} D(P_{XYZ} \parallel Q_{XYZ}) = \min_{Q_{Z|Y} \in \mathcal{P}(Z|Y)} D(P_{XYZ} \parallel P_{XY} \times Q_{Z|Y})$$

$$= D(P_{XYZ} \parallel P_{XY} \times P_{Z|Y}) = I(X : Z|Y),$$

- Minimizing the Rényi divergence yields a Rényi or α-CMI:

$$\min_{Q_{XYZ} \in \mathcal{Q}} D_\alpha(P_{XYZ} \parallel Q_{XYZ}) = D_\alpha(P_{XYZ} \parallel P_{XY} \times Q_{*,\alpha}^{Z|Y}) = I_\alpha(X : Z|Y).$$

where the optimal distribution is given by

$$Q_{*,\alpha}^{Z|Y}(z|y) = \frac{P_{Z|Y=y}(z)}{\sum_z P_{Z|Y=y}(z)} \left(\sum_x P_{X|Z=z,Y=y}(x) P_{X|Y=y}^{1-\alpha}(x) \right)^{\frac{1}{\alpha}}$$

and the α-CMI thus evaluates to $I_\alpha(X : Z|Y) =$

$$\frac{1}{\alpha - 1} \log \left(\sum_y P_Y(y) \left(\sum_z P_{Z|Y=y}(z) \left(\sum_x P_{X|Y=y,Z=z}(x)^\alpha P_{X|Y=y}(x)^{1-\alpha} \right)^{\frac{1}{\alpha}} \right)^\alpha \right).$$
Checking axioms: Universal Markov distribution

- **Axiom 1 satisfied**: The set $Q = Q_1$ is convex, the optimizers $Q^*_{X|Y}$ lie in its relative interior.

- **Axiom 2,4b satisfied**: The sets Q_n contain product distributions and are closed under permutations.

- **Axiom 3 satisfied**: Additivity implied by structure of $Q^*_{Z|Y}$, i.e.

$$Q^*_{Z|Y^n} = \left(Q^*_{Z|Y}\right)^\times$$

- **Axiom 4a satisfied**: There exists a sequence of permutation covariant universal channels $U^n_{Z|Y^n}$.

Proof for trivial Y^n: Let \mathcal{T}_n be the set of n-types.

$$U^n_{Z|Y^n}(z^n) = \frac{1}{|\mathcal{T}_n|} \sum_{\lambda \in \mathcal{T}_n} \frac{1\{x^n \text{ is of type } \lambda\}}{\sum_{y^n} 1\{y^n \text{ is of type } \lambda\}}$$

For any p.i. distribution $P_{Z^n} \leq |\mathcal{T}_n|U^n_{Z|Y^n}$ and $|\mathcal{T}_n| = \text{poly}(n)$.

Connection to channel coding

HT against Markov distribution

null hypothesis: \((X^n, Y^n, Z^n) \sim P^n_{XYZ}\),
alternative hypothesis: \(X^n \leftrightarrow Y^n \leftrightarrow Z^n,\ (X^n, Y^n) \sim P^n_{XY}\).

- The error exponent/reliability function is given by

 \[
 \sup_{s \in (0,1)} \left\{ \frac{1 - s}{s} \left(I_s(X:Z|Y) - R \right) \right\}, \quad R \leq I(X:Z|Y).
 \]

- For trivial \(Y\) this is simply the Gallager function:

 \[
 I_s(X:Z) = \min_{Q_Z \in \mathcal{P}(Z)} D_s(P_{XY} \| P_X \times Q_Z)
 \]

 \[
 = \frac{s}{1 - s} \log \sum_z \left(\sum_x P_X(x) P_{Z|X=x}(z)^s \right)^{1/s} = E_0\left(\frac{1 - s}{s}, P_X, P_{Z|X} \right).
 \]

- We may rewrite the exponent as:

 \[
 \sup_{\rho \geq 0} E_0(\rho, P_X, P_{Z|X}) - \rho R.
 \]
• This is not entirely expected in light of the Polyanskiy et al. (2010) and Vasquez-Vilar et al. (2016).
• The latter show that the average error for a codebook P_X with $P_X(x) \in \{0, \frac{1}{M}\}$ of size M satisfies

$$\bar{\varepsilon}(P_X) = \hat{\alpha} \left(\frac{1}{M} \right)$$

for the HT problem

HT against crappy channel

null hypothesis: $(X, Y) \sim P_X \times W_{Y|X}$,
alternative hypothesis: $X \sim P_X$, independent of Y.

• The meta converse bounds the average error for any codebook:

$$\bar{\varepsilon} \geq \min_{P_X \in \mathcal{P}(\mathcal{X})} \hat{\alpha} \left(\frac{1}{M} \right)$$
Summary and Outlook

• In the paper we analyze error exponents, strong converse exponents and second order asymptotics for HT problems where the composite alternative hypothesis satisfies slightly weaker axioms.

• We show how HT against Markov distributions yields an operational interpretation for Rényi CMI.

• The relation between the channel coding single-shot bounds and our asymptotics remain unclear.
 • Can we derive the sphere packing and random coding bounds in the composite hypothesis testing picture?

• Does composite hypothesis testing against Markov distribution have similar relations to single-shot network coding problems?