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mutual information via composite hypothesis

testing against Markov distributions

Marco Tomamichel1, Masahito Hayashi2

1School of Physics, The University of Sydney
2Graduate School of Mathematics, Nagoya University, and

Centre for Quantum Technologies, National University of Singapore

ISIT 2016, Barcelona
(arXiv: 1511.04874)



Simple Hypothesis testing

• Binary hypothesis testing (HT) is fundamental in statistics
and information theory.

(Simple) Binary HT

• Sequence of random variables Xn = (X1, X2, . . . , Xn) with
Xi taking values in X .

• Two distributions P,Q ∈ P(X ).

null hypothesis: Xn ∼ P×n ,
alternative hypothesis: Xn ∼ Q×n.

• Sequence of tests, maps Tn : X n → [0, 1].

• Define errors of two kinds,

αn(Tn) = EP×n [1− Tn(Xn)] and βn(Tn) = EQ×n [Tn(Xn)].
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Critical rate

• The goal is to understand the asymptotic tradeoff between αn
and βn for optimal test sequences.

Stein’s lemma

Let Tn be a sequence with αn ≤ ε, for ε ∈ (0, 1). Then

βn ≥ exp
(
− nD(P‖Q) + o(n)

)
and there is a sequence that achieves this.

• This gives operational significance to the relative entropy:

D(P‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

• D(P‖Q) is a critical rate: if βn vanishes faster than
exp(−nD(P‖Q)) then αn must converge to 1.
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Small deviations

• Strassen (1962) showed a refinement for small deviations from
the critical rate.

Second order refinement

Let Tn be a sequence with βn ≤ exp(−nD(P‖Q)−
√
nr) for

some r ∈ R. Then

lim
n→∞

αn ≥ Φ

(
r√

V (P‖Q)

)

and there is a sequence that achieves this.

• Φ is the cumulative standard normal distribution function.

• The relative entropy variance characterizes the second order:

V (P‖Q) =
∑
x∈X

P (x)

(
log

P (x)

Q(x)
−D(P‖Q)

)2

.
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Large deviations

• For rates below the relative entropy we find the error exponent
(attributed to Hoeffding).

Error exponent

Let Tn be a sequence with βn ≤ exp(−nR) for R ≥ 0. Then

lim
n→∞

− 1

n
logαn ≤ sup

s∈(0,1)

{
1− s
s

(
Ds(P‖Q)−R

)}
and there is a sequence that achieves this.

• Here the Rényi divergence is given by (Rényi, 1961)

Dα(P‖Q) =
1

α− 1
log

(∑
x∈X

P (x)αQ(x)1−α

)
• This result is only meaningful for R ≤ D1(P‖Q) = D(P‖Q).

5 / 19



Composite hypothesis testing

• In our work we look at a general framework of HT problems:

HT with composite alternative hypothesis

• Sequence of random variables Xn = (X1, X2, . . . , Xn) with
Xi taking values in X .

• A distributions P ∈ P(X ) and a sequence of sets {Qn}n∈N
with Qn ⊂ P(X n).

null hypothesis: Xn ∼ P×n ,
alternative hypothesis: Xn ∼ Qn, for Qn ∈ Qn.

• Error is now βn(T ) = maxQn∈Qn EQn [Tn(Xn)].

• The Qn characterize the composite hypothesis.

• We show that under certain conditions on Qn variations of
the above results still hold.
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Axioms for Qn

• Define Dα(P‖Q) := infQ∈QDα(P‖Q).

Axiom 1: convexity

The base set Q = Q1 is convex. Moreover, arg minQ∈QDs(P‖Q)
lies in the relative interior of Q for all s (and is thus unique).

Axiom 2: independent identical distributions (i.i.d.)

We have Q×n ∈ Qn for every Q ∈ Q.

• From Axiom 2 follows that Ds(P
×n‖Qn) ≤ nDs(P‖Q).

Axiom 3: superadditivity

For all s ≥ 0 we have Ds(P
×n‖Qn) ≥ nDs(P‖Q).

• Hence if Axioms 2&3 hold we have equality, or additivity.
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• A distribution Qn ∈ P(X n) is permutation invariant (p.i.) if

Qn(x1, x2, . . . , xn)︸ ︷︷ ︸
Qn(xn)

= Qn(xπ(1), xπ(2), . . . , xπ(n))︸ ︷︷ ︸
Qn(π(xn))

for all π ∈ Sn and xn ∈ X n.

• The set Qp.i.
n comprises all p.i. elements of Qn.

Axiom 4a: universal distribution

There exists a sequence of distributions Un ∈ Qp.i.
n and a

polynomial v(n) such that, for all Qn ∈ Qp.i.
n ,

Qn(xn) ≤ v(n)Un(xn), ∀xn ∈ X n .

• The map Qn(·) 7→ 1
n!

∑
π Q

n(π(·)) is called symmetrization.

Axiom 4b: symmetrization

The set Qn is closed under symmetrization.
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An important consequence

• The importance of the universal distribution lies here:

Lemma: universal test

If Axioms 2–4 hold, then

lim
n→∞

1

n
Ds(P

×n‖Un) = Ds(P‖Q) .

Proof of ‘≥’: Implied by additivity.
Proof of ‘≤’: For every Q ∈ Q we find that Q×n ∈ Qp.i.

n . Hence,

Ds(P
×n‖Un) ≤ Ds(P

×n‖Q×n) + log v(n)

= nDs(P‖Q) +O(log n) .

Inequality follows by taking limit and supremum over Q ∈ Q.
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Main result: large deviations

• Define optimal constrained error as

α̂n(µ) := min
Tn
{αn(Tn) : βn(Tn) ≤ µ}.

Theorem: error exponent

Assume Axioms 1–4 hold. For any R ≤ D(P‖Q),

lim
n→∞

− 1

n
log α̂n (exp (−nR)) = sup

s∈(0,1)

{
1− s
s

(
Ds(P‖Q)−R

)}
.

Proof of achievability:

• We use a Neyman-Pearson tests between P×n and the
universal distribution Un.

Tn(x
n) =

{
1 if P×n(xn) ≥ λnUn(xn)
0 else

.
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Proof of achievability (continued):

• For the error αn we find

αn(Tn) = P×n
[
P×n(Xn) < λnU

n(Xn)
]

≤ λ1−s
n exp

(
(s− 1)Ds(P

×n‖Un)
)
.

• For the error βn we find

βn(Tn) = max
Qn∈Qn

Qn
[
P×n(Xn) ≥ λnUn(Xn)

]
= max
Qn∈Qp.i.

n

Qn
[
P×n(Xn) ≥ λnUn(Xn)

]
≤ v(n)Un

[
P×n(Xn) ≥ λnUn(Xn)

]
≤ v(n)λ−sn exp

(
(s− 1)Ds(P

×n‖Un)
)
.

• We chose λn such that the above is bounded by exp(−nR).
The corresponding α(Tn) is an upper bound on α̂n. We find

− log α̂n (exp (−nR)) ≥
1− s
s

(
Ds(P

×n‖Un)− nR− log v(n)
)
.

• And we see that the rhs. converges to the expected quantity.

• We optimize over s ∈ (0, 1).
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Main result: second order

• Let Q∗ = arg minQ∈QD(P‖Q), define V (P‖Q) = V (P‖Q∗).

Theorem: second order

Assume Axioms 1–4 hold. For any r ∈ R, we have

lim
n→∞

α̂n
(
exp

(
−nD(P‖Q)−

√
nr
))

= Φ

(
r√

V (P‖Q)

)
.

Proof of achievability:
• We use the same test.

Tn(x
n) =

{
1 if P×n(xn) ≥ λnUn(xn)
0 else

.

• For s = 1 the errors are bounded as

βn(T
n) ≤ v(n)λ−1

n and αn = P×n
[
P×n(Xn) < λnU

n(Xn)
]
.
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Proof of achievability (continued):

• We set λn = v(n) exp(nD(P‖Q) +
√
nr) and find

α(Tn) = P×n[Yn(X
n) < r] with

Yn =
1√
n

(
logP×n(Xn)− logUn(Xn)− nD(P‖Q)− log v(n)

)
.

• The cumulant generating function of the sequence Yn
converges to a quadratic function:

logMY (t) = lim
n→∞

logE[exp(tYn)]

= lim
n→∞

{
t√
n

(
D1+ t√

n
(P×n‖Un)− nD(P‖Q)

)}
=
t2

2
V (P‖Q).

• By Lévi’s theorem, Yn converges in probability to a Gaussian
distribution with zero mean and variance V (P‖Q).
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Example: testing against Markov distributions

HT against Markov distribution

• Sequences of random variables (Xn, Y n, Zn).

• A distribution PXY Z ∈ P(X × Y × Y).

null hypothesis: (Xn, Y n, Zn) ∼ P×nXY Z ,
alternative hypothesis: Xn ↔ Y n ↔ Zn, (Xn, Y n) ∼ P×nXY .

• The alternate hypothesis has fixed i.i.d. marginal on
(Xn, Y n), but arbitrarily correlated with Zn.

Qn =
{
P×nXY ×QZn|Y n : QZn|Y n ∈ P(Zn|Yn)

}
• Other variants are discussed in the paper.
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Checking axioms: α-conditional mutual information

• Minimizing the relative entropy yields the conditional mutual
information (CMI):

min
QXYZ∈Q

D(PXY Z‖QXY Z) = min
QZ|Y ∈P(Z|Y )

D(PXY Z‖PXY ×QZ|Y )

= D(PXY Z‖PXY × PZ|Y ) = I(X :Z|Y ),

• Minimizing the Rényi divergence yields a Rényi or α-CMI:

min
QXYZ∈Q

Dα(PXY Z‖QXY Z) = Dα(PXY Z‖PXY ×Q∗,αZ|Y ) = Iα(X :Z|Y ) .

where the optimal distribution is given by

Q∗,αZ|Y (z|y) =
PZ|Y=y(z)

(∑
x P

α
X|Z=z,Y=y(x)P

1−α
X|Y=y(x)

) 1
α

∑
z PZ|Y=y(z)

(∑
x P

α
X|Z=z,Y=y(x)P

1−α
X|Y=y(x)

) 1
α

and the α-CMI thus evaluates to Iα(X :Z|Y ) =

1

α− 1
log

∑
y

PY (y)

∑
z

PZ|Y=y(z)

(∑
x

PX|Y=y,Z=z(x)
αPX|Y=y(x)

1−α

) 1
α

α.
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Checking axioms: Universal Markov distribution

• Axiom 1 satisfied: The set Q = Q1 is convex, the optimizers
Q∗,αX|Y lie in its relative interior.

• Axiom 2,4b satisfied: The sets Qn contain product
distributions and are closed under permutations.

• Axiom 3 satisfied: Additivity implied by structure of Q∗,αZ|Y , i.e.

Q∗,αZn|Y n =
(
Q∗,αZ|Y

)×n
• Axiom 4a satisfied: There exists a sequence of permutation

covariant universal channels UnZn|Y n .

Proof for trivial Y n: Let Tn be the set of n-types.

UnZn(zn) =
1

|Tn|
∑
λ∈Tn

1{xn is of type λ}∑
yn 1{yn is of type λ}

For any p.i. distribution PZn ≤ |Tn|UnZn and |Tn| = poly(n).
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Connection to channel coding

HT against Markov distribution

null hypothesis: (Xn, Y n, Zn) ∼ P×nXY Z ,
alternative hypothesis: Xn ↔ Y n ↔ Zn, (Xn, Y n) ∼ P×nXY .

• The error exponent/reliability function is given by

sup
s∈(0,1)

{
1− s
s

(
Is(X :Z|Y )−R

)}
, R ≤ I(X :Z|Y ) .

• For trivial Y this is simply the Gallager function:

Is(X :Z) = min
QZ∈P(Z)

Ds(PXY ‖PX ×QZ)

=
s

1− s log
∑
z

(∑
x

PX(x)PZ|X=x(z)
s

)1/s

= E0

(
1− s
s

, PX , PZ|X

)
.

• We may rewrite the exponent as: sup
ρ≥0

E0(ρ, PX , PZ|X)− ρR.
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• This is not entirely expected in light of the Polyanskiy et al.
(2010) and Vasquez-Vilar et al. (2016).

• The latter show that the average error for a codebook PX
with PX(x) ∈ {0, 1

M } of size M satisfies

ε̄(PX) = α̂

(
1

M

)
for the HT problem

HT against crappy channel

null hypothesis: (X,Y ) ∼ PX ×WY |X ,

alternative hypothesis: X ∼ PX , independent of Y .

• The meta converse bounds the average error for any codebook:

ε̄ ≥ min
PX∈P(X )

α̂

(
1

M

)
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Summary and Outlook

• In the paper we analyze error exponents, strong converse
exponents and second order asymptotics for HT problems
where the composite alternative hypothesis satisfies slightly
weaker axioms.

• We show how HT against Markov distributions yields an
operational interpretation for Rényi CMI.

• The relation between the channel coding single-shot bounds
and our asymptotics remain unclear.
• Can we derive the sphere packing and random coding bounds

in the composite hypothesis testing picture?

• Does composite hypothesis testing against Markov distribution
have similar relations to single-shot network coding problems?
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